پیش بینی وقوع طوفان گرد و خاک با استفاده از روش شبکه های عصبی مصنوعی (مطالعه ی موردی: شهر زابل)

Authors

محمدرضا جمالیزاده تاج آبادی

علیرضا مقدم نیا

جمشید پیری

محمدرضا اختصاصی

abstract

طوفان­های گرد و خاک یکی از انواع رایج حوادث و فرایندهای اقلیمی در مناطق خشک، نیمه­خشک و بیابانی دنیا هستند. این طوفان­ها هر ساله خسارتهای مالی زیادی را بر منابع انسانی وارد می­سازند. پیش­بینی زمان وقوع این پدیده می­تواند برای اتخاذ تدابیر پیشگیرانه در مقابل خسارت­های بهداشتی، ترابری، نظامی و غیره مؤثر واقع شود. شبکه­های عصبی مصنوعی روشی است که می­تواند برای پیش­بینی روندهای غیرخطی و فرایندهایی که درک کاملی از نحوه­ی وقوع آنها وجود ندارد، مورد استفاده قرار گیرد. در مقاله­ی حاضر سعی شده است تا با استفاده از این روش به پیش­بینی وقوع طوفان گرد و خاک و نیز میزان دید حداقل روزانه در شهر زابل با استفاده از داده­های هواشناسی پرداخته شود. نتایج بدست­آمده در پیش­بینی کوتاه­مدت وقوع طوفان­ها موفقیت بیشتری نشان می­دهند (96/0=d)، اگرچه با بیشترشدن زمان پیش­بینی، از دقت نتایج کاسته می­شود (95/0=d). در حالی که در پیش­بینی میزان دید موفقیت کمتری به­­دست­آمد (88/0=d). بنابراین به نظر می­رسد با شناخت بهتر فرایند این طوفان­ها بتوان پیش­بینی­های دقیق­تری را با استفاده از این شبکه­ها انجام داد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی وقوع طوفان گرد و خاک با استفاده از روش شبکه‌های عصبی مصنوعی (مطالعه‌ی موردی: شهر زابل)

طوفان­های گرد و خاک یکی از انواع رایج حوادث و فرایندهای اقلیمی در مناطق خشک، نیمه­خشک و بیابانی دنیا هستند. این طوفان­ها هر ساله خسارتهای مالی زیادی را بر منابع انسانی وارد می­سازند. پیش­بینی زمان وقوع این پدیده می­تواند برای اتخاذ تدابیر پیشگیرانه در مقابل خسارت­های بهداشتی، ترابری، نظامی و غیره مؤثر واقع شود. شبکه­های عصبی مصنوعی روشی است که می­تواند برای پیش­بینی روندهای غیرخطی و فرایندهایی ...

full text

پیش بینی میزان درآمد حاصل از دریافت عوارض شهری شهرداری‌ها با استفاده از مدل شبکه عصبی (مطالعه موردی: شهر زابل)

اداره ﻣﻄﻠﻮب ﺷﻬﺮﻫﺎ و اراﺋﻪ ﺧﺪﻣﺎت ﻣﻨﺎﺳﺐ و ﮐﻨﺘﺮل و ﻫﺪاﯾﺖ ﭘﺮوژه­ﻫﺎی ﻋﻤﺮاﻧﯽ، ﻋﻼوه ﺑﺮ اﻋﻤﺎل ﻣﺪﯾﺮﯾﺖ ﺻﺤﯿﺢ، ﻣﺴﺘﻠﺰم اﻋﺘﺒﺎرات و درآﻣﺪﻫﺎی ﮐﺎﻓﯽ و ﻫﺰﯾﻨﻪ ﺻﺤﯿﺢ آن ﻣﯽ ﺑﺎﺷﺪ عوارض از مهم ترین منابع بهینه شهرداری‌ها در کشورهای پیشرفته جهان است که بابت اداره شهر از درآمدها، اموال، دارایی و مصرف اشخاص حقیقی و حقوقی دریافت می‌گردد و صرف خدمات شهری می‌شود. شهرداری­ها عمده هزینه­های ارائه خدمات خود را از محل دریافت عوا...

full text

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...

full text

My Resources

Save resource for easier access later


Journal title:
تحقیقات مرتع و بیابان ایران

Publisher: موسسه تحقیقات جنگلها و مراتع کشور

ISSN 1735-0875

volume 17

issue 2 2010

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023